Related image

Disclaimer – Each individual has unique body requirements specific to them.  Art of boxing – train like a champ recommends prior to beginning any Health & fitness program and/or diet you first consult your physician and have a physical exam.  only if your doctor approves should you take on any diet including information contained on this website.

Top Cancer-Fighting Foods

Mounting evidence shows that the foods we eat weigh heavily in the war against cancer.

By Elizabth Heubeck
As researchers continue to wage war against cancer, many have begun to focus on what could be the most promising ammunition to date: diet.

“The easiest, least-expensive way to reduce your risk for cancer is just by eating a healthy diet,” says Rachael Stolzenberg-Solomon, PhD, MPH, RD, a researcher at the National Cancer Institute.

When it comes to a diet rich in cancer-fighting substances, most experts agree that it should consist of a predominantly plant-based diet. “If you have two-thirds of plant food on your plate, that seems to be enough to avoid excessive amounts of food high in saturated fat,” says Karen Collins, RD, nutritional advisor for the American Institute for Cancer Research.

That seemingly simple advice could mean a drastic change in diet for many people.

“People who are thinking that this is like a diet, and are trying to choke this stuff down, it’s never going to last,” Collins tells WebMD. “You’re looking at creating something for a lifetime. If it takes you awhile, but each month or so you enjoy [one more vegetable], then that’s great,” Collins.

Related image

Fun Facts about Fruits and Vegetables

You may want to start with some of the following food substances, all of which show promise as cancer-fighting agents.

Folate-Rich Foods

This B-complex vitamin can be found in many ‘good for you’ foods. Plus, manufacturers of cereals, pastas, and breads often fortify their products with folate.

How It Works

“The thought is that when someone has low levels of folate, it’s more likely for mutations in DNA to occur,” Stolzenberg-Solomon says. Conversely, adequate levels of folate protect against such mutations.

Cancer-Fighting Abilities

In a large-scale study, researchers evaluated the effects of folate on more than 27,000 male smokers between ages 50 and 69. Men who consumed at least the recommended daily allowance of folate — about 400 micrograms — cut by half their risk of developing pancreatic cancer.

How to Get It

Starting with breakfast, a glass of orange juice is high in folate; so are most cereals (check the box to see how much). For lunch, try a hearty salad with either spinach or romaine leaves. Top it with dried beans or peas for an extra boost. Snack on a handful of peanuts or an orange. At dinner, choose asparagus or Brussels sprouts as your vegetable.


Use Food To Prevent & Heal Sports Injuries

by Tamara Jacobi – Holistic Health Coach

You’ve been training for months, maybe even years, for the big race. Yet, a quick snap, crackle or pop and it’s game over. Instead of heading to the starting line, you’re sitting on the couch.
Did you know that sports injuries are often a sign of nutrition imbalance? Many athletes have come to think of injuries as simply part of training and being “sporty.” At the same time, athletes have a tendency to focus their diet on a basic set of sports nutrition “rules” that concentrate on specific ratios of proteins, carbs and calories, with little attention to nutritional quality. Coincidence? I’m not so sure .
Knee pain, pulled muscles, tweaked backs — the list goes on, and once injury strikes, few us have the time or the patience to sit around and let our injuries heal properly. The result? Significant pain, inflammation, a serious interruption in training and sometimes long-term damage.
Instead of accepting a fate of injuries, I think it’s time for athletes to take control of their health and embrace a more preventative approach. Smart training and a balanced fitness regime (including yoga!) can definitely help prevent injury. However, when it comes to preventing injuries, quality nutrition is a deal breaker. Athletes who support their bodies daily with a strong foundation of quality, whole foods will establish a strong defense against muscles strains and tears and are much less likely to get injured. Properly nourished athletes also recover faster if they do get injured.
The question athletes need to be asking themselves is: Do I know what foods work best for my athletic body? The truth is that there’s no one-size-fits-all way of eating for sports, and every athlete is unique. However, here are some tips to get you started with injury prevention and healing. 
1. Hydrate! 
No, I don’t mean guzzling gallons of coconut water or bottled sports drinks. I’m talking about pure, clean water for with injury prevention. A dehydrated joint or tissue is more susceptible to tears and injury. It also puts additional stress on the body and can cause imbalance. Adequate water consumption is critical to athletic performance and injury prevention.  
Related image
2. Keep collagen healthy with vitamin C. 
Collagen is needed for holding bone together. It also provides strength and flexibility for ligaments and tendons.  Vitamin C is a key player in the collagen equation. Athletes should feast on vitamin C-rich foods such as citrus fruits, dark leafy greens, broccoli and strawberries (organic, of course!). Adding a squeeze of fresh lemon to your water could make all the difference. 
3. Establish a nutritional trifecta for bone health. 
Fill your plate with foods rich in calcium, magnesium and vitamin D and your athletic bones will be grateful! Though calcium gets a lot of attention for its role with bone health, the truth is that magnesium and vitamin D are equally as important. Calcium is definitely required for strong bones and thus for the prevention of stress fractures, but the body doesn’t absorb calcium well and requires magnesium for proper assimilation. 
Vitamin D is also required for proper calcium absorption. But wait! Before you reach for some milk and cheese to build strong bones, you might be surprised to learn that dairy could actually be doing damage to your athletic body. Alternatively, a diet rich in green leafy vegetables, raw nuts and seeds, cold-water fish and whole grains can help you meet your calcium, magnesium and vitamin D needs. Don’t forget to enjoy some sunshine!
4. Calm inflammation with healthy fats. 
Omega-3s are an essential fatty acid that is your body’s primary defense again chronic inflammation. Omega-3s do wonders to help to ensure that your athletic joints and tissues are nourished and that your immune system is healthy and happy. Many athletes are deficient in omega-3s and consume far too many omega-6s. Oily fish, seeds and raw walnuts are all great sources of omega3s, and asupplement might also be a good idea for athletes. 
5. Don’t forget the zinc! 
Zinc is an extremely important mineral for healing tissues and wounds if you do get injured. This mineral is also a key player in your immune system. Whole food sources of zinc include red meat, lentils, turkey and brown rice.
Now let’s skip the couch and hit the starting line! Integrate these tips into your sporty life and you’re on the road to becoming a holistic athlete! Feasting on quality whole foods and being mindful of injury prevention will do wonders for your career as an athlete. 
Ready to go deeper with this and discover what works best for your unique body? Join me for my upcoming online program “Sports Nutrition with a Holistic Twist.” It’s time to change your life as an athlete!
 Related image

Nutrition – diet & injury prevention: how what you eat can stop you getting hurt

by The Sports Injury Doctor – Raphael Brandon

Diet affects performance: this is such a well-researched and documented fact that nothing more need be said on it here. In contrast, there has been relatively little research on whether diet can be a factor in the prevention of sports injuries. Nevertheless, in recent years there has been enough discussion of theoretical links between nutrition and potential injury causes, along with a few empirical studies, for every athlete to realise that diet is as vital for injury prevention as it is for maximum competition and training results.

Carbohydrate and protein:
First of all, it’s important to recognise that the correct carbohydrate intake is essential for avoiding injury just as it is for energy. Theoretically, the level of carbohydrate intake could influence injury-risk status. If glycogen levels are low, then muscle-protein breakdown may increase to compensate for the lack of the preferred fuel supply. Chronic glycogen depletion may lead to decreases in strength and possible soft-tissue damage.

Related imageRelated image

While glycogen is the main fuel for exercise, recent research has emphasised that muscle protein is definitely broken down in both strength and endurance training (Brukner, 1993). To compensate, protein synthesis is increased post-exercise. Thus the athlete’s diet must include an increased amount of protein to allow for this synthesis. As with a lack of glycogen, insufficient protein may lead to decreases in strength and possible muscle damage due to decreased muscle mass. Tarnopolsky et al (1988) measured the nitrogen balance of bodybuilders and endurance athletes who were training at a high level. Their findings led to recommendations of 1.2g of protein per kg of body weight per day for the bodybuilders and 1.6g/kg/day for the endurance athletes. Other research confirms these findings, recommending 1.4g/kg/day for regular training. This is significantly greater than the US RDA of 0.8g/kg/day.

The message here is that, with regular training and especially endurance training, you will be unable to support your muscle mass without sufficient carbohydrate and protein. This may lead to long-term strength loss, which is a potential injury cause.

Calcium and iron:
At the micronutrient level, the lack of certain vitamins and minerals has been linked with injuries. For instance, calcium intake is a factor contributing to bone density. Research with animals has shown that calcium deficiency can cause osteoporosis, which is reversed when calcium levels are restored. If calcium is essential for healthy bone density, then any deficiency may increase the risk of stress factors.

This theoretical link is supported by some empirical research by Myburgh and colleagues (1988). They analysed 25 athletes suffering from lower-leg stress fractures and compared them with control subjects who had no shin pain. The controls were matched for weight, height and performance levels. The researchers found that the stress-fracture group had significantly lower bone-mineral densities than the control group. They also had significantly lower calcium intakes and fewer dairy products in their diets. Although the research suggested that some biomechanical factors were also implicated in the injury rates, it clearly showed that the athletes’ diet, specifically their calcium status, was a potential cause of their stress fractures.

Iron deficiency can also be a potential cause of injury, Peter Brukner (1993) describes how low blood-iron levels will reduce the oxidative potential in the muscles. This will shift the energy production towards producing more lactate, which may contribute to muscle injuries. Frank Horwill, the BAF coach, cites a study involving 164 cross-country female runners which found that a quarter of the athletes had low serum ferritin level (blood iron count) and that this low-iron group was three times more likely to be injured during the rest of the season than the other runners.

Related imageRelated image

The message here is that athletes who want to train regularly must ensure that their diets contain sufficient calcium and iron. This will help promote healthy bones and muscles with full oxidative function. Thus the bones will withstand repetitive stresses and the muscles won’t fatigue too early.

There is strong evidence to suggest that vitamins C and E may have an important role to play in injury prevention, acting as antioxidants to combat the muscle damage caused by exercise.

When we exercise, the body uses oxygen to form ATP, which allows the muscles to contract. This is known as the aerobic energy pathway. However, the downside of this pathway is that the breakdown of oxygen is not 100 per cent clean. Inevitably, free radicals such as superoxides, hyperoxides and hydroxyls are produced. The more training an athletes does, the more oxygen is used and the more oxygen free radicals are formed. These free radicals are dirty and cause damage to the muscle cells via a process called lipid peroxidation. This then triggers off an inflammatory response in the muscle to mop up the damaged cells. It is this inflammatory response that is associated with muscle soreness after vigorous training. Dekkers and colleagues (1996) and Michael Colgan, the sports nutrition guru (1993), both review conclusive research which shows that this lipid peroxidation process is increased post-exercise and is a cause of muscle-cell damage.

Fortunately, the body has a defence mechanism against the unwanted free radicals in the form of antioxidants. These neutralise the radicals, inhibiting the damaging lipid peroxidation process. The body has endogenous antioxidants, which it can form itself and which combat the formation of free radicals. In fact, with training the body is able to increase the endogenous antioxidant activity post-exercise (Dekkers et al, 1996). In addition, the body can also use nutrient antioxidants, such as vitamin E (tocopherol) and vitamin C to act against free radicals.

Michael Colgan describes how vitamin E is fat-soluble, and therefore it can absorb the radicals inside the fatty membranes, breaking down the lipid peroxidation reaction. This leaves behind tocopherol radicals which are then neutralised by vitamin C to regenerate vitamin E. Dekkers et al (1996) support this theory with reviews of various studies done with humans which show that vitamin E and vitamin C supplementation inhibits lipid peroxidation. This suggests that athletes in regular training who supplement their diet with these antioxidants will reduce their injury risk and enable them to train harder without suffering as much soreness.

To support this, Dekkers et al describe a study which examined the relationship between exhaustive stepping exercise and delayed onset muscle soreness (DOMS). The study compared two groups, one of which was given vitamin C and the other not. The vitamin C group showed significantly less DOMS than the control group. This suggests that extra antioxidants can reduce the muscle damage caused by exercise. Dekkers recommends antioxidant supplementation for anyone doing heavy, frequent exercise.

Michael Colgan argues that because of the extra antioxidant requirements due to the increased lipid peroxidation post-exercise, athletes will be unable to get sufficient vitamin E and vitamin C in their regular diet. Therefore, supplementation is crucial if an athlete wants to recover properly from heavy training and stay injury-free. He also recommends selenium and co-enzyme Q10 as two additional antioxidant supplements.

Take-home lessons
I’ve summarised some of what’s been written on the nutrition-injury links which is supported by research using humans. While this is a new research area, and much more is needed, it should be clear that there are established relationships between nutrition and injury risks which athletes should be aware of. First, sufficient carbohydrate and protein is essential to maintain muscle strength with regular heavy exercise, especially endurance exercise. Second, sufficient calcium and iron are needed to ensure healthy bone density and full muscle oxidative function. Studies have shown that any calcium or iron depletion will increase injury risks significantly, since bones are weaker and muscles tire faster. Sufficient quantities of these minerals are especially important for women athletes. Finally, there is a specific biomechanical mechanism called lipid peroxidation which causes damage to muscles. Studies have shown that antioxidant supplementation, specifically vitamins E and C, will inhibit this process, thus allowing better recovery from hard training which in turn lowers injury risks.